Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587909

RESUMO

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/metabolismo , DNA Complementar , Gânglios , Opsinas/metabolismo
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442351

RESUMO

The shield bug, Dolycoris baccarum (L.) (Heteroptera: Pentatomidae), is widely distributed across Asia and Europe. At high latitudes, it overwinters, as adult in diapause, which then becomes the insect source for the following year. To fully understand the developmental duration and diapause characteristics of D. baccarum, the effects of photoperiod and temperature were studied in a population from Hohhot, Inner Mongolia, China. The results indicated that the developmental duration was significantly prolonged at temperatures of 20 or 25 °C, with a prolonged light period; however, when the light period was prolonged to 16L:8D and 18L:6D, the developmental duration was shortened significantly. Furthermore, the developmental duration was also shortened significantly with increasing temperature, when the photoperiod was 12L:12D for short days and 16L:8D for long days. All individuals entered diapause under short-day conditions of 10L:14D and 12L:12D at a temperature of 20 °C; however, the diapause rate decreased significantly under 14L:10D and 16L:8D photoperiods, and the diapause rate decreased significantly at a temperature of 25 °C with prolonged photoperiod. Interestingly, when the photoperiod was fixed at 12L:12D, the diapause rates at different temperatures (20, 25, 28, and 30 °C) exceeded 95%; while the effect of temperature on diapauses was nonsignificant under this photoperiod, it was still sensitive to the photoperiod; at a photoperiod of 16L:8D, the effect of temperature on the diapause rate was noticeable, and the diapause rate decreased significantly with increasing temperature.


Assuntos
Diapausa de Inseto , Diapausa , Heterópteros , Humanos , Animais , Fotoperíodo , Temperatura , China
3.
J Comp Physiol B ; 194(2): 131-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441658

RESUMO

Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.


Assuntos
Metabolismo Energético , Glicogênio , Estações do Ano , Vespas , Animais , Vespas/fisiologia , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Feminino , Metabolismo dos Carboidratos , Diapausa de Inseto/fisiologia
4.
J Comp Physiol B ; 194(2): 145-154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478065

RESUMO

The European corn borer (Ostrinia nubilalis, Hbn.), enters diapause, a strategy characterized by arrest of development and reproduction, reduction of metabolic rate and the emergence of increased resistance to challenging seasonal conditions as low sub-zero winter temperatures. The aim of this study was to investigate the potential role of inorganic elements in the ecophysiology of O. nubilalis, analysing their content in the whole body, hemolymph and fat body, both metabolically active, non-diapausing and overwintering diapausing larvae by ICP-OES spectrometer following the US EPA method 200.7:2001. O nubilalis as many phytophagous lepidopteran species maintain a very low extracellular sodium concentration and has potassium as dominant cation in hemolymph of their larvae. Changes in hemolymph and the whole body sodium content occur already at the onset of diapause (when the mean environmental temperatures are still high above 0 ºC) and remain stable during the time course of diapause when larvae of this species cope with sub-zero temperatures, it seems that sodium content regulation is rather a part of diapausing program than the direct effect of exposure to low temperatures. Compared to non-diapausing O. nubilalis larvae, potassium levels are much higher in the whole body and fat body of diapausing larvae and substantially increase approaching the end of diapause. The concentration of Ca, Mg, P and S differed in the whole body, hemolymph and fat body between non-diapausing and diapausing larvae without a unique trend during diapause, except an increase in their contents at the end of diapause.


Assuntos
Temperatura Baixa , Hemolinfa , Larva , Mariposas , Estações do Ano , Sódio , Animais , Larva/fisiologia , Hemolinfa/metabolismo , Mariposas/fisiologia , Sódio/metabolismo , Corpo Adiposo/metabolismo , Potássio/metabolismo , Diapausa de Inseto/fisiologia
5.
Bull Entomol Res ; 114(2): 260-270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425077

RESUMO

Aspongopus chinensis Dallas 1851, an insect of important economic value, faces challenges in artificial breeding due to mandatory diapause and limited access to wild resources. Heat shock proteins (Hsps) are thought to influence diapause in insects, but little is known about their role in A. chinensis during diapause. This study used genomic methods to identify 25 Hsp genes in A. chinensis, including two Hsp90, 14 Hsp70, four Hsp60 and five small Hsp genes, were located on seven chromosomes, respectively. The gene structures among the same families are relatively conserved. Meanwhile, the motif compositions and secondary structures of A. chinensis Hsps (AcHsps) were predicted. RNA-seq data and fluorescence quantitative PCR analysis showed that there were differences in the expression patterns of AcHsps in diapause and non-diapause stages, and AcHsp70-5 was significantly differentially expressed in both analysis, which was enriched in the pathway of response to hormone. All the results showed that Hsps play an important role in the diapause mechanism of A. chinensis. Our observations highlight the molecular evolution of the Hsp gene and their effect on diapause in A. chinensis.


Assuntos
Diapausa de Inseto , Proteínas de Choque Térmico , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Diapausa de Inseto/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Família Multigênica , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/crescimento & desenvolvimento
6.
J Med Entomol ; 61(3): 644-656, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38387012

RESUMO

In temperate regions of the United States, female Anopheles mosquitoes respond to low temperatures and short photoperiods by entering an overwintering dormancy or diapause. Diapause in Anopheles results in reduced frequency of blood-feeding and reproductive arrest, indicating a period when pathogen transmission by these mosquitoes is unlikely. However, it is unclear precisely how late into the fall and how early in the spring these mosquitoes are biting, reproducing, and potentially transmitting pathogens. This is further complicated by the lack of clear markers of diapause in Anopheles (e.g., changes in egg follicle length). Our goal was to characterize the seasonal reproductive activity of female Anopheles in central Ohio, United States and evaluate egg follicle length as an indicator of Anopheles diapause. We used traditional mosquito traps and aspirators to collect Anopheles from urban woodlots and culverts, respectively, from late September 2021 through mid-May 2022 in central Ohio. By measuring their egg follicle length, reproductive status, and blood-feeding status, we found that egg follicle length is not a reliable indicator of Anopheles diapause. We also found that a small proportion of An. punctipennis (Say), An. perplexens (Ludlow), and An. quadrimaculatus (Say) continued to bite and reproduce into early November 2021 and that females of these species terminated reproductive dormancy and began biting by mid-March 2022. This period of reproductive activity extends beyond current mosquito surveillance and control in Ohio. Our findings suggest that within temperate regions of North America, Anopheles have the capacity to transmit pathogens throughout the spring, summer, and fall.


Assuntos
Anopheles , Diapausa de Inseto , Reprodução , Estações do Ano , Animais , Anopheles/fisiologia , Feminino , Ohio
7.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387433

RESUMO

The spotted amber ladybird, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), is known to be a potent predator of aphids, psyllids, whiteflies, mealybugs, and some butterfly species. This ladybeetle overwinters in the diapausing adult stage. The current study aimed to evaluate the impact of diapause on the energy resources and cuticular hydrocarbons (CHCs) of the female ladybeetle, specifically comparing the changes in glycogen, lipid, and protein contents, and CHCs profile of diapausing and non-diapausing adults. In this study, gas chromatography-mass was used to analyze whole-body extracts of the beetles. Results showed no significant differences between the amount of glycogen, lipid, and protein contents of diapausing and non-diapausing ladybeetle. The CHCs profile of H. variegata consisted of 24 hydrocarbons categorized into 2 groups: linear aliphatic hydrocarbons (n-alkanes) and methyl-branched hydrocarbons (17 molecules), as well as unsaturated cyclic compounds (7 molecules). The n-alkanes, with 14 compounds, were identified as the primary constituents of the CHCs of the ladybeetle. Six molecules were common to non-diapausing and diapausing beetles, 5 were exclusive to non-diapausing beetles, and 13 were exclusive to diapausing beetles. Moreover, we noted a significant difference in the quantity and quality of CHCs between diapausing and non-diapausing beetles, with diapausing beetles synthesizing more CHCs with longer chains. This disparity in CHC profiles was concluded to be an adaptation of H. variegata to survive harsh environmental conditions during diapause.


Assuntos
Besouros , Diapausa de Inseto , Diapausa , Feminino , Animais , Hidrocarbonetos , Besouros/fisiologia , Alcanos , Glicogênio , Lipídeos
8.
J Insect Physiol ; 153: 104615, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237657

RESUMO

Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/genética , Diapausa de Inseto/fisiologia , Óvulo , Ritmo Circadiano/fisiologia , Fotoperíodo , Diapausa/genética , Larva/genética
9.
Heredity (Edinb) ; 132(3): 142-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291272

RESUMO

Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.


Assuntos
Borboletas , Diapausa de Inseto , Diapausa , Animais , Diapausa de Inseto/fisiologia , DNA Recombinante/metabolismo , Borboletas/genética , Adaptação Fisiológica
10.
Int J Biol Macromol ; 256(Pt 2): 128269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029912

RESUMO

Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.


Assuntos
Besouros , Diapausa de Inseto , Diapausa , Animais , Diapausa de Inseto/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Filogenia , Histonas/genética , Histonas/metabolismo , Besouros/genética
11.
J Insect Physiol ; 151: 104585, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977342

RESUMO

Insects have the capacity to significantly modify their metabolic rate according to environmental conditions and physiological requirement. Consequently, the respiratory patterns can range from continuous gas exchange (CGE) to discontinuous gas exchange (DGE). In the latter, spiracles are kept closed during much of the time, and gas exchange occurs only during short periods when spiracles are opened. While ultimate causes and benefits of DGE remain debated, it is often seen during insect diapause, a deep resting stage that insects induce to survive unfavourable environmental conditions, such as winter. The present study explores the shifts between CGE and DGE during diapause by performing long continuous respirometry measurements at multiple temperatures during key diapause stages in the green-veined white butterfly Pieris napi. The primary goal is to explore respiratory pattern as a non-invasive method to assess whether pupae are in diapause or have transitioned to post-diapause. Respiratory pattern can also provide insight into endogenous processes taking place during diapause, and the prolonged duration of diapause allows for the detailed study of the thermal dependence of the DGE pattern. Pupae change from CGE to DGE a few days after pupation, and this shift coincides with metabolic rate suppression during diapause initiation. Once in diapause, pupae maintain DGE even at elevated temperatures that significantly increase CO2 production. Instead of shifting respiratory pattern to CGE, pupae increase the frequency of DGE cycles. Since total CO2 released during a single open phase remains unchanged, our results suggest that P. napi pupae defend a maximum internal ρCO2 set point, even in their heavily suppressed diapause state. During post-diapause development, CO2 production increases as a function of development and changes to CGE during temperature conditions permissive for development. Taken together, the results show that respiratory patterns are highly regulated during diapause in P. napi and change predictably as diapause progresses.


Assuntos
Borboletas , Diapausa de Inseto , Diapausa , Animais , Temperatura , Dióxido de Carbono/metabolismo , Diapausa de Inseto/fisiologia , Insetos/metabolismo , Pupa
12.
Bull Entomol Res ; 113(5): 665-675, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37555240

RESUMO

Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Feminino , Animais , Bombyx/genética , Diapausa de Inseto/genética , Fosfatidato Fosfatase/metabolismo , RNA/metabolismo , Metabolismo dos Lipídeos , Adenosina/metabolismo , Óvulo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
13.
J Insect Physiol ; 147: 104517, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116642

RESUMO

Timing of maternal photoperiodic response of Trichogramma telengai to a single long night was studied in laboratory experiments. Adult females reared under diapause-averting short night conditions (L:D = 18:6) experienced one diapause-inducing prolonged night (12 h) and then were allowed to lay eggs (to parasitize the host, Sitotroga cerealella, eggs) during 3 days. The progeny was incubated under moderately diapause-inducing conditions (14 °C in the dark). The maternal photoperiodic response was extremely rapid: a slight but statistically significant increase in the incidence of diapause was already observed in the progeny hatched from the eggs laid 8 h after the beginning of the 'additional' part of night. Such a quick photoperiodic response, as far as we know, has not been reported for any insect. Then the proportion of diapausing progeny gradually increased over 30-50 h reaching 85-95%. Control females developed and were kept as adults under short night (L:D = 18:6) conditions; diapause was induced in <10% of their progeny. Analysis of individual variations showed that the proportion of diapausing progeny of experimental females increased with time gradually (not abruptly). These data enriches our knowledge of insect photoperiodic response and can be used for the planning of further (in particular, molecular) studies.


Assuntos
Diapausa de Inseto , Mariposas , Feminino , Animais , Temperatura , Óvulo , Ritmo Circadiano , Fotoperíodo
14.
Environ Entomol ; 52(3): 436-445, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37119126

RESUMO

The Western cherry fruit fly, Rhagoletis indifferens (Curran), is a Tephritid fly in the Pacific Northwest and is known to infest native bitter cherry, Prunus emarginata (Douglas ex Hooker), which is distributed throughout the Cascade Mountain range. This species occupies temperate to alpine climates and exhibits overwintering adaptations of diapause and supercooling. Isothermal and differential scanning calorimetry were used to determine the effects of diapause chilling duration and post-chilling warm rearing on the metabolic rate and supercooling point of R. indifferens. Previous studies have included the effects of chilling duration on post-diapause development and emergence as well as on the levels of metabolic reserves. Metabolic rate of R. indifferens, was used to calculate the ability of this species to remain in diapause for more than 1 yr as well as predicting the potential effects of climate change on the future abundance and distribution. It was determined that R. indifferens could diapause for more than 1 yr based on the levels of metabolic reserves and metabolic rate.


Assuntos
Diapausa de Inseto , Tephritidae , Animais , Drosophila , Noroeste dos Estados Unidos , Aclimatação
15.
J Insect Physiol ; 146: 104499, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914090

RESUMO

To face recurrent temperature changes, tettigoniids inhabiting temperate climates overwinter as eggs in a diapause stage, being able to postpone embryogenesis for one or more years. To date, it is unclear if species living in warm regions, especially under the Mediterranean climate, could exhibit a diapause for a single year or enter a prolonged diapause due to higher summer temperatures experienced by eggs immediately after oviposition. In this two-year study, we tested the effect of summer temperatures on diapause of six Mediterranean tettigoniid species under natural field conditions. We found that five species can exhibit a facultative diapause depending on mean summer temperatures. For two species, a substantial shift in egg development from 50 to 90% occurred over an interval of c. 1 °C after the first summer period. All the species increased considerably their development (nearly 90%) after the second summer period irrespective of temperatures. Overall, this study suggests that diapause strategy and the different thermal sensibility of embryonic development varies considerably across species potentially affecting their population dynamics.


Assuntos
Diapausa de Inseto , Diapausa , Ortópteros , Feminino , Animais , Temperatura , Óvulo
16.
J Insect Physiol ; 146: 104501, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921838

RESUMO

Low temperatures associated with winter can limit the survival of organisms, especially ectotherms whose body temperature is similar to their environment. However, there is a gap in understanding how overwintering may vary among groups of species that interact closely, such as multiple parasitoid species that attack the same host insect. Here, we investigate cold tolerance and diapause phenotypes in three endoparasitoid wasps of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae): Utetes canaliculatus, Diachasma alloeum, and Diachasmimorpha mellea (Hymenoptera: Braconidae). Using a combination of respirometry and eclosion tracking, we found that all three wasp species exhibited the same three diapause duration phenotypes as the fly host. Weak (short duration) diapause was rare, with <5 % of all three wasp species prematurely terminating diapause at 21 °C. Most D.mellea (93 %) entered a more intense (longer duration) diapause that did not terminate within 100 d at this warm temperature. The majority of U.canaliculatus (92 %) and D. alloeum (72 %) averted diapause (non-diapause) at 21 °C. There was limited interspecific variation in acute cold tolerance among the three wasp species: wasps and flies had similarly high survival (>87 %) following exposure to extreme low temperatures (-20 °C) as long as their body fluids did not freeze. The three wasp species also displayed little interspecific variation in survival following prolonged exposure to mild chilling of 8 or more weeks at 4 °C. Our study thus documents a remarkable conservation of cold tolerance and diapause phenotypes within and across trophic levels.


Assuntos
Diapausa de Inseto , Tephritidae , Vespas , Animais , Vespas/genética , Larva , Temperatura Baixa , Tephritidae/genética
17.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852692

RESUMO

Diapause, a stage-specific developmental arrest, is widely exploited by insects to bridge unfavorable seasons. Considerable progress has been made in understanding the ecology, physiology and evolutionary implications of insect diapause, yet intriguing questions remain. A more complete understanding of diapause processes on Earth requires a better geographic spread of investigations, including more work in the tropics and at high latitudes. Questions surrounding energy management and trade-offs between diapause and non-diapause remain understudied. We know little about how maternal effects direct the diapause response, and regulators of prolonged diapause are also poorly understood. Numerous factors that were recently linked to diapause are still waiting to be placed in the regulatory network leading from photoreception to engagement of the diapause program. These factors include epigenetic processes and small noncoding RNAs, and emerging data also suggest a role for the microbiome in diapause regulation. Another intriguing feature of diapause is the complexity of the response, resulting in a diverse suite of responses that comprise the diapause syndrome. Select transcription factors likely serve as master switches turning on these diverse responses, but we are far from understanding the full complexity. The richness of species displaying diapause offers a platform for seeking common components of a 'diapause toolbox'. Across latitudes, during invasion events and in a changing climate, diapause offers grand opportunities to probe evolutionary change and speciation. At a practical level, diapause responses can be manipulated for insect control and long-term storage. Diapausing insects also contain a treasure trove of pharmacological compounds and offer promising models for human health.


Assuntos
Diapausa de Inseto , Diapausa , Humanos , Animais , Evolução Biológica , Clima , Ecologia
18.
Pest Manag Sci ; 79(5): 1897-1911, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36683402

RESUMO

BACKGROUND: The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS: The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION: Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.


Assuntos
Diapausa de Inseto , Transcriptoma , Animais , Feminino , Proteômica/métodos , Diapausa de Inseto/genética , Perfilação da Expressão Gênica/métodos , Lipídeos
19.
Insect Biochem Mol Biol ; 154: 103909, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693452

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) plays important roles in gene transcription, metabolism, apoptosis, development, and signal transduction. However, its role in the regulation of pupal diapause remains unclear. In this paper, we find that low GSK3ß activity in brains of diapause-destined pupae of Helicoverpa armigera is caused by elevated AKT activity. In response to ROS, AKT phosphorylates GSK3ß to decrease its activity. In developing pupal brains, GSK3ß can activate the transcription factor Smad1, which binds to the promoter region of the ecdysone receptor (EcR) gene and increases its expression. In the presence of 20-hydroxyecdysone (20E), EcR can bind to USP and increase the expression of 20E-response genes, including HR3, for pupal-adult development. In contrast, high levels of ROS in brains of diapause-destined pupae up-regulate p-AKT, which in turn decreases GSK3ß activity. Low GSK3ß activity causes low expression of EcR/HR3 via down-regulation of Smad1 activity, leading to diapause initiation. These results suggest that low GSK3ß activity plays a key role in pupal diapause via ROS/AKT/GSK3ß/Smad/EcR/HR3 signaling.


Assuntos
Diapausa de Inseto , Mariposas , Receptores de Esteroides , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Receptores de Esteroides/genética , Mariposas/genética , Ecdisona/metabolismo , Pupa
20.
J Insect Physiol ; 145: 104488, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717056

RESUMO

Many insects enter a dormant state termed diapause in anticipation of seasonal inhospitable conditions. Insects drastically reduce their feeding during diapause. Their reduced nutrient intake is paired with substantial nutrient costs: maintaining basal metabolism during diapause, repairing tissues damaged by adverse conditions, and resuming development after diapause. Many investigators have asked "Does nutrition affect diapause?" In this review, we survey the studies that have attempted to address this question. We propose the term nutritional status, a holistic view of nutrition that explicitly includes the perception, intake, and storage of the great breadth of nutrients. We examine the studies that have sought to test if nutrition affects diapause, trying to identify specific facets of nutritional status that affect diapause phenotypes. Curiously, low quality host plants during the diapause induction phase generally induce diapause, but food deprivation during the same phase generally averts diapause. Using the geometric framework of nutrition to identify specific dietary components that affect diapause may reconcile these contrasting findings. This framework can establish nutritionally permissive space, distinguishing nutrient changes that affect diapause from changes that induce other dormancies. Refeeding is another important experimental technique that distinguishes between diapause and quiescence, a non-diapause dormancy. We also find insufficient evidence for the hypothesis that nutrient stores regulate diapause length and suggest manipulations to investigate the role of nutrient stores in diapause termination. Finally, we propose mechanisms that could interface nutritional status with the diapause program, focusing on combined action of the nutritional axis between the gut, fat body, and brain.


Assuntos
Diapausa de Inseto , Diapausa , Animais , Estações do Ano , Estado Nutricional , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...